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The generalized Bel-Robinson tensor as a generator 
J. S. DOWKER 
Department of Theoretical Physics, University of Manchester 
MS.  received 19th December 1967 

Abstract. I t  is shown, on the basis of an explicit calculation using canonical field 
theory, that the generalized Bel-Robinson tensor for arbitrary spin generates a 
transformation which is equivalent to a multiple derivative of a translation in agree- 
ment for spin 2 with a recent calculation of Komar's. 

The  transformations generated by the Zilch are also briefly considered, 

1. Introduction 
Komar (1968) has shown in the linearized Einstein theory that the Bel-Robinson 

superenergy tensor Tuvffa (e.g. Trautman 1962) generates the canonical transformation 
which is obtained by taking the second derivative of a translation. He shows, in fact, that 

where h,, is the small metric deviation from Cartesian values and cr is a space-like surface. 
Komar's calculation is a classical one and the left-hand side of (1) is to be taken as a Poisson 
bracket. 

In  this brief paper we should like to show how this result follows rather neatly using 
an expression for a generalization of the Bel-Robinson tensor given in earlier papers 
(Dowker and Dowker 1966 b, Dowker and Goldstone 1967, Dowker 1967). We shall 
employ the formalism of quantum field theory and will therefore derive (anti-) commutators 
rather than Poisson brackets. 

2. Calculation 
The system we consider is described by a massless (2j+ 1)-spinor q3.. (For descriptions 

of the notions and notations we use, refer to our previous references and also to Dowker 
and Dowker 1966 a, Williams 1965, Weinberg 1964 a, b, Tung 1967.) qj satisfies free-field 
equations which can be written in the form (Dowker 1967, Dowker and Goldstone 1967) 

where the matrices t U i . . , U a !  

The generalized Bel-Robinson tensor T3.(") is defined by 
t ( u )  have been adequately described in the cited references. 

and is conserved in view of (2). 
We are now going to calculate the (anti-) commutator 

This is the quantum analogue of the left-hand side of (1). We have chosen the space-like 
surface to be y o  = const. In  particular, since Ti(&) is conserved we may take y o  = xo, 

277 



278 J.  S. Dowker 

We then need the equal-time commutation rules for the pj. These are (Weinberg 1964 a, b, 
Tung 1967, Lomont 1958) 

[PAX),  Pi(Y)I. = 0 (5) 

(6) 
1 

[ ~ j ( x ) ,  q j + ( ~ ) l  f = - {f'')P(u)-( - 1 ) 2 3 ~ ' u ) ~ ( u ) ' P ( ~ - ~ )  
ZPO 

where p ,  = ia,, pupb = 0 and pU1 = p'. Also p t u )  = pul  ... pu,!. 
If now (5) and (6) are substituted into (4) and the integration performed we find 

1 

We can further replace t(@)p(u)' by t(fi)P(&) since it@) differs from t ( b )  only in that corresponding 
terms with odd numbers of spatial indices have opposite signs (e.g. Weinberg 1964 a). 

T o  prove the required theorem it is necessary to use some algebraic relations satisfied 
by the t',) and f(@). Let us consider firstly the term 

T o  reduce this, we employ the anti-commutation rule (Dowker and Dowker 1966 a, 
Williams 1965, Weinberg 1964 a) 

f(Ul...uQj~v,...v,,) = g g  ( U , V ,  @,VZ ,.. g W 2 9  (8) 

where the parentheses signify complete symmetrization of the indicated indices. Equa- 
tion (8) yields easily, if (2) is used, 

There are 2j- 1 derivatives on the right-hand side of (9). 

and Dowker (1966 a) is convenient. This formula reads 
We now show that the term t ( g ) t ( a ) o p ( l L ) ~ j  vanishes. T o  do this, formula (9) of Dowker 

We now note that the matrices P )  are polynomials of maximum degree 2j in the angular 
momentum matrices J (Weinberg 1964 a). In  particular, if one index is temporal, 
e.g. Po, a maximum product of 2j- 1 J matrices occur in this polynomial. Thus we see 
that repeated application of (10) leads to a final expression for the quantity t ( U ) t ( a ) O ,  on each 
t of which there is at least one p index, so that t(u)t(a)op(U,pj vanishes because of (2). 

Finally, then, we obtain the formula 

[ q 3 ( x ) ,  Pp)] * = +P - la(.) P1dX) (11) 

which generalizes Komar's result. In  the special case of gravitation in oacuoj = 2 and p 
is just a complex, 5-spinor arrangement of the ten, real independent components of the 
Weyl conformal tensor, Equation (2) is then equivalent to the Bianchi identity. 

3. Conclusion and discussion 
Equation (11) is the essential result of the present work. However, we can go on and 

enquire whether, by the same method of using canonical field theory, we can obtain the 
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transformations generated by the conserved Zilch-like tensors. As was shown by Dowker 
(1967), the simplest and original Zilch (Lipkin 1964) is generalized for arbitrary spin to the 
quantity 

This object is traceless and is conserved on all indices. It is thus natural to ask about the 
transformations generated by the constants 2, and Z,, where 

[ p l j ( X ) ,  a,ip,yy)] * = - 2- { f (u )p (U)  - ( -  1)2w)p(,,')a,is(x -y) 
2Po 

an almost identical calculation with the previous one yields 

[q,(x) ,  Z,'"'] * = pa'" 'pj(x) 

[qr (x ) ,  Z,(a- l )B]  * = 3 i 2 i a ( " - 1 ) a B  ( P A X ) .  

These results are identical with those of Steudel (1965), whose calculation is based on 
Noether's theorem in a classical Lagrangian approach. 

The  possible significance of these results for the programme of the quantization of 
general relativity has been discussed by Komar (1968). The basic idea is that in flat space 
there exists a preferred set of canonical transformations-those generated by the symmetry 
group of space-time ; since the energy-momentum tensor generates translations in space- 
time, perhaps we can use the superenergy tensor in a similar way in curved space-time to 
introduce a preferred set of canonical transformations. Whether this hope is born out 
remains to be seen. 
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